Ceramic-Metal Interfaces in Nuclear Materials Applications

Sean M. McDeavitt

Presented at the
American Nuclear Society

2002 Annual Meeting, Hollywood, FL
June 12, 2002

Acknowledgements

- Garth W. Billings, west CERAC, inc, Reno, NV (formerly with Integrated Thermal Sciences, Inc, Santa Rosa, CA)
- J. Ernesto Indacochea, University of Illinois at Chicago

Interfaces in Nuclear Systems

- Basic examples
 - Fuel-cladding or fuel-matrix contact (ceramic to metal contact; not a structural interface).
 - Cladding-coolant interfaces (e.g., metal to water, graphite to gas, metal to liquid metal).
- Non-standard examples
 - Fuel processing and fabrication (very aggressive environments).
 - Advanced nuclear systems for chemical processing (emerging applications with new materials needs).

High Temperature GenIV Materials

- Many GenIV systems presently just assume improvements in high temperature materials.
- Advanced ceramics, coatings, and functional graded materials are all potential solutions.

THEREFORE:

 Ceramic-metal interface chemistry becomes a critical issue for the success of GenIV concepts.

Applying Chemical Innovation to Environmental Problems...

Data Mining from an Unrelated Project

- Governing Project Mission: Melting Reactive Metals.
 - Stable ceramics with non-wetting behavior required.
 - "Failures" provide insights for brazing.
- · Critical Challenges Associated with Brazing.
 - Wetting of ceramic surface by a liquid metal.
 - Interface reactions required to alter the surface chemistry.

ems...

High Temperature Wetting

- Non-Wetting (left):
 - Minimal metal-ceramic interaction.
- Wetting (right):
 - Alteration of the liquid metal and solid surface chemistry.
 - Important issues include:
 - Thermodynamic stability (∆G_f)
 - Properties of the modified interface
 - Temperature-dependent solubility limits in liquid and solid phases
 - High temperature stoichiometry

Chemical Technology Division

Applying Chemical Innovation to Environmental Problems...

△Gf of Stable Compounds Oxides Alo 3 Zro 2 UO B 110 Oxides Alo 3 Zro 2 Oxides Alo 4 Zro 2 Oxides Alo

Chemical Technology Division

Experiment Details

- Substrate Preparation.
 - High purity powders (no sintering aids or other impurities).
 - Hot uniaxial pressing (~90% dense).
 - No special surface finish.
- Experimental Conditions.
 - Multiple samples in the same experiment run.
 - High purity argon cover gas.
 - Heating Rate:
 - 50°C/min to 1500°C
 - 20°C/min to 1800°C
 - 10°C/min to T_{max} (Typically >2000°C for 15 minutes)
 - Cooling rate uncontrolled.

Post-test Characterization

- Vigorous Interface Reactions
 - Dissolution of original BeO plus liquid metal infiltration.
 - Very smooth metal-ceramic interface is (i.e., uniform dissolution).

What's Going on?

Available Reactions

$$Zr_{(\ell)} + 2BeO_{(s)} \rightarrow ZrO_2 + 2Be$$
 (not favored)

$$Zr_{(\ell)} + BeO_{(s)} \rightarrow Zr-Be compound (???)$$

$$Zr_{(\ell)} + BeO_{(s)} \rightarrow Zr(xO_Be)_{(\ell)} + (x+2y=1)$$

Oxides

BeO

-100

∆Gf (kcal/O Atom)

Zirconium on Yttrium Oxide (Y₂O₃)

- Interface reaction produces strong bond.
 - Zirconium melted and wet at ~1850 °C (contact angle ~50°).
 - Y₂O₃ cracking on cooling from thermal expansion mismatch.
 - Bubbling observed at the interface (similar to BeO).
 - Possible Reaction "Framework":

Chemical Technology Division

Applying Chemical Innovation to Environmental Problems.

Y₂O₃ Precipitates form on Cooling

- Oxygen-rich layer at the metal-ceramic interface.
- Yttrium segregation to the α -Zr grain boundaries.

Zirconium on Nitride Ceramics

- Zirconium Nitride (ZrN)
 - Initial melting observed at 1975°C (T_{melt} = 1855°C).
 - Zr completely molten at ~ 2000°C.
 - Liquid wet the ZrN substrate; no gas bubbles.
 - Interfacial cracks evident in post-test exam.
- Hafnium Nitride (HfN)
 - Initial melting observed at ~2000°C (T_{melt} = 1855°C).
 - Zr completely molten at ~ 2100°C.
 - Liquid wet the ZrN substrate; no gas bubbles.
 - Smooth interface evident in post-test exam (no cracks).

Interaction "Framework"

General Reactions (for Discussion Purposes)

$$HfN + Zr_{(\ell)} \rightarrow HfN_{(1-x1)} + a ZrN_{(1-x2)} + b Zr(N)_{(\ell)} (+c N_{2(g)})$$

$$ZrN + Zr_{(\ell)} \rightarrow ZrN_{(1-x1)} + a ZrN_{(1-x2)} + b Zr(N)_{(\ell)} (+c N_{2(g)})$$

- Suppressed melting behavior suggests:
 - Nitrogen contamination in metal (substrate most likely source).
 - Transfer of N begins below the Zr melting point.
- · Post melting observations:
 - Zr metal "beads" were golden (qualitative evidence of nitriding).
 - ZrN phases observed in metal microstructure.
 - Suspect N_2 dissolved in $Zr(\alpha)$ up to saturation level.

Chemical Technology Division

Applying Chemical Innovation to Environmental Problems...

Zr/ZrN Post-test Observations

- Modified ZrN layer developed with tight bond to "metal."
- Cracks present in new ZrN layer due to expansion mismatch.
- ZrN laths in the Zr matrix.

Zirconium on ZrC (Classic Brazing)

- Zr flowed freely (spreading) over ZrC after melting.
- No observable reaction between Zr metal and ZrC.
- No notable new phase at the Zr/ZrC interface.

Applying Chemical Innovation to Environmental Problems

Reactive Wetting – Beyond the Textbook

Four General Interface Types Observed:

- (1) Observable reaction product phase between the liquid metal and the ceramic with minimal chemical exchange between the phases (e.g., Y₂O₃).
- (2) <u>Observable reaction product phase</u> between the liquid metal and the ceramic with <u>extensive chemical exchange</u> between the phases (e.g., ZrN and HfN).
- (3) No observable reaction product phase between the liquid metal and the ceramic with extensive chemical exchange between the phases (e.g., BeO).
- (4) No observable reaction product phase between the liquid metal and the ceramic with minimal chemical exchange between the phases (e.g., ZrC).

Summary of Reactive Wetting Review

- High temperature thermodynamic equilibrium is not well characterized for many systems of interest.
 - High temperature stoichiometry effects, temperaturedependent solubility, multi-component reactions, and other high temperature phenomena play significant roles.
 - Basic free energy data only provides a credible first guess.
- Database providing fundamental data relevant to reactive wetting applications.
 - Application-specific data for Zr (and other reactive metals) as filler metals are found in literature.

olems...